

Q.P. CODE: 79693

MATHEMATICS SOLUTION

(DEC-2019 SEM-4 COMPS)

Q1] A) Find all the basics solutions to the following problem:

 $\text{Maximise}: z = \ x_1 + 3x_2 + 3x_3$

Subject to :
$$x_1 + 2x_2 + 3x_3 = 4$$

$$2x_1 + 3x_2 + 5x_3 = 7$$

 $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3 \ge \mathbf{0}$

SOLUTION :-

Maximise : $z = x_1 + 3x_2 + 3x_3$

Subject to : $x_1 + 2x_2 + 3x_3 = 4$

$$2x_1 + 3x_2 + 5x_3 = 7$$

 $x_1, x_2, x_3 \ge 0$

No of	Non	Basic	Equation and	ls	Is solution	Value	ls
basic	basic	variable	values of basic	solution	degenerate	of Z	solution
solution	variable		variables	feasible?			optimal
1	$x_3 = 0$	x ₁ , x ₂	$\mathbf{x}_1 + 2\mathbf{x}_2 = 4$	Yes	No	5	Yes
			$2x_1 + 3x_2 = 7$				
			$x_1 = 2, x_2 = 1$				
2	$x_2 = 0$	x ₁ , x ₃	$x_1 + 3x_3 = 4$	Yes	No	4	No
			$2x_1 + 5x_3 = 7$				
			$x_1 = 1, x_3 = 1$				
3	$x_1 = 0$	X ₂ , X ₃	$2x_2 + 3x_3 = 4$	no	no	-	-
			$3x_2 + 5x_3 = 7$				
			$x_2 = -1, x_3 = 2$				

(5)

Q1] B) Evaluate
$$\int_{c}^{1} (z - z^2) dz$$
, where c is upper half of the circle $|z| = 1$ (5) SOLUTION:-

Evaluate $\int_{c}^{1} (z - z^{2}) dz$ |z| = 1 $z = e^{i\theta}$ $\therefore dz = e^{i\theta} d\theta$ and θ varies from 0 to π $\int_{c}^{1} (z - z^{2}) dz = \int_{0}^{\pi} (e^{i\theta} - e^{2i\theta}) e^{i\theta} d\theta = i \int_{0}^{\pi} (e^{2i\theta} - e^{3i\theta}) d\theta = i \left[\frac{e}{2i} - \frac{e}{3i}\right]_{0}^{\pi}$ $= \left[\frac{e^{2i}}{2} - \frac{e^{3i\pi}}{2} - \frac{1}{2} + \frac{1}{3}\right] = \left[\frac{1}{2} + \frac{1}{3} - \frac{1}{2} + \frac{1}{3}\right] = \frac{2}{3}$ The value of the integral for the lower half of the same circle in the same positive direction i.e when θ varies from π to 2π .

$$\int_{c}^{1} (z - z^{2}) dz = i \left[\frac{e^{-tx}}{2i} - \frac{e^{-tx}}{3i} \right]_{\pi} = i \left[\frac{e^{-tx}}{2i} - \frac{e^{-tx}}{3i} - \frac{e^{-tx}}{2i} + \frac{e^{-tx}}{3i} \right]$$
$$= \left[\frac{\cos 4\pi + i\sin 4\pi}{2} - \frac{\cos 6\pi + i\sin 6\pi}{3} - \frac{\cos 2\pi + i\sin 2\pi}{2} + \frac{\cos 3\pi + i\sin 3\pi}{2} \right] = \left[\frac{1}{2} - \frac{1}{3} - \frac{1}{2} - \frac{1}{3} \right] = -\frac{2}{3}$$

Q1] C) Ten individuals are chosen at random from a population and heights are found to be 63,63,64,65,66,69,69,70,70,71 inches. Discuss the suggestion that the height of universe is 65 inches. (5)

SOLUTION:-

N = 10(< 30, so it is small sample)

Null hypothesis(H_0): $\mu = 65$

Alternate hypothesis(H_a): $\mu \neq 65$

LOS = 5%

Degree of freedom = n-1=10-1 =9

Critical value(t_x) = 2.2622

Values (x _i)	$D_{i} = x_{i} - 67$	D _i ²
63	-4	16
63	-4	16
64	-3	9
65	-2	4
66	-1	1

69	2	4
69	2	4
70	3	9
70	3	9
71	4	16
Total	0	88

 $\overline{d} = \frac{\sum d_i}{n} = \frac{0}{10} = 0$ $\overline{x} = a + \overline{d} = 67 + 0 = 67$

Since sample is small,

$$s = \sqrt{\frac{\sum d_i^2}{n} - \left(\frac{\sum d_i}{n}\right)^2} = \sqrt{\frac{88}{10} - \left(\frac{0}{10}\right)^2} = 2.9965$$
$$S.E = \frac{s}{\sqrt{n-1}} = \frac{2.9965}{\sqrt{9}} = 0.9888$$

Test statistics

$$t_{cal} = \frac{\bar{x} - \mu}{S.E} = \frac{67 - 65}{0.988} = 2.0227$$

Decision

Since $|t_{cal}| < t_x$, H_0 is accepted.

The man height of the universe is 65 inches

Q1] D) If
$$A = \begin{bmatrix} 2 & 3 \\ -3 & -4 \end{bmatrix}$$
 then find A^{100}

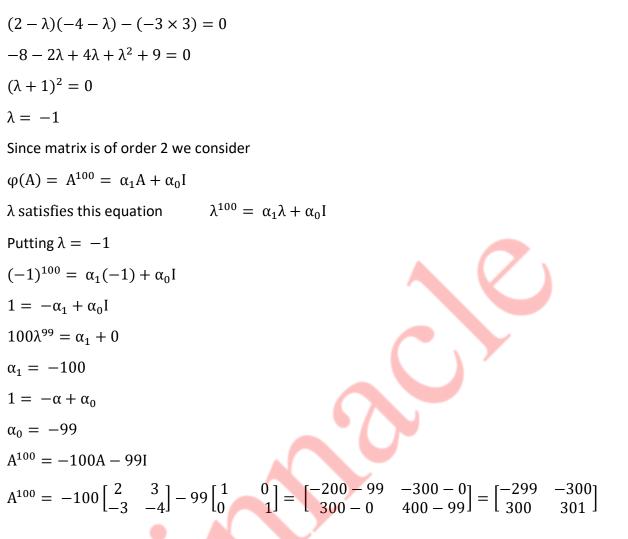
SOLUTION:-

$$\mathbf{A} = \begin{bmatrix} 2 & 3 \\ -3 & -4 \end{bmatrix}$$

The characteristics equation is

 $\begin{bmatrix} 2-\lambda & 3\\ -3 & -4-\lambda \end{bmatrix} = 0$

(5)



Q2] A) Evaluate $\int_{c}^{1} \frac{z+2}{(z-3)(z-4)} dz$, where c is the circle |z| = 1 (6)

SOLUTION:-

 $\int_{c}^{1} \frac{z+2}{(z-3)(z-4)} dz \qquad |z| = 1$

|z| = 1 is a circle with center at the origin and radius 1 hence both points z = 3 and z = 4 lie outside the circle C and f(z) is analytic in C

By Cauchy's theorem $\int_{c}^{1} \frac{z+2}{(z-3)(z-4)} dz = 0$

OUR CENTERS : KALYAN | DOMBIVLI | THANE | NERUL | DADAR Contact - 9136008228

Q2] B) An I.Q test was administered to 5 persons and after they were trained. The results are given below. (6)

Test whether there is change in I.Q after the training program use 1% LOS

	1	11	111	IV	V
I.Q before training	110	120	123	132	125
I.Q after training	120	118	125	136	121

SOLUTION:-

	1	11		IV	V
I.Q before	110	120	123	132	125
training					
I.Q after	120	118	125	136	121
training					

(8)

deviation in each case is 10 - 2 + 2 + 4sum of d=10 d²=100+4+4+16+16=140

d = sum of
$$\frac{d}{n} = \frac{10}{2} = 5$$
 and s = $\sqrt{\frac{d^2 - nd}{n-1}} = \sqrt{\frac{140 - (4)}{5-1}} = 5.673$

Hence there is no change of IQ after training since given t0.01(4) = 4.6

Q2] C) Solve the following LPP using Simplex Method

Maximize $z = 4x_1 + 10x_2$ Subject to $2x_1 + x_2 \le 10$ $2x_1 + 5x_2 \le 20$ $2x_1 + 3x_2 \le 18$ $x_1, x_2 \ge 0$

Solution:-

We first express the given problem in standard form.

Maximize $z = 4x_1 + 10x_2 + 0s_1 + 0s_2 + 0s_3$ i.e. $z - 4x_1 - 10x_2 + 0s_1 + 0s_2 + 0s_3 = 0$

Subject to $2x_1 + x_2 + s_1 + 0s_2 + 0s_3 = 10$

$$2x_1 + 5x_2 + 0s_1 + s_2 + 0s_3 = 20$$

$$2x_1 + 3x_2 + 0s_1 + 0s_2 + s_3 = 18$$

We put this information in tabular form as follows.

Iteration	Basic		Coeff	RHS	ration			
no	variable	X ₁	X ₂	S ₁	S ₂	S ₃	soln	
0	Z	-4	-10	Os	0	0	0	
s ₂ leaves	S ₁	2	1	1	0	0	10	10
x_2 enters	S ₂	2	5	0	1	0	20	4
	S ₃	2	3	0	0	1	18	6
1	z	0	0	0	2	0	40	
s_1 leaves	S ₁	8/5	0	1	-1/5	0	6	15/4
x_1 enters	X2	2/5	1	0	1/5	0	4	10
	S ₃	4/5	0	0	-3/5	1	6	15/2
	(
2	Z	0	0	0	-1/5	0	40	
	x ₁	1	0	5/8	-1/8	0	15/4	
	x ₂	0	1	-1/4	1/5	0	5/2	
	S ₃	0	0	-1/2	-1/2	1	3	

 $x_1 = \frac{15}{4}$; $x_2 = \frac{5}{2}$ and $z_{max} = 40$

This is an alternative solution. But this does not improve the above optimal solution.

Thus we have two solutions, $x_1 = 0$; $x_2 = 4$ and $z_{max} = 40$

And $x_1 = \frac{15}{4}$; $x_2 = \frac{5}{2}$ and $z_{max} = 40$

If there are two solutions to a problem then there are infinite number solutions.

OUR CENTERS : KALYAN | DOMBIVLI | THANE | NERUL | DADAR Contact - 9136008228

Let
$$X = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$$
, $X_1 = \begin{bmatrix} 0 \\ 4 \end{bmatrix}$, $X_2 = \begin{bmatrix} \frac{15}{4} \\ \frac{5}{2} \end{bmatrix}$, then $X = \lambda$ $X_1 + (1 - \lambda)X_2$ for $0 \le \lambda \le 1$
i.e. $X = \begin{bmatrix} \frac{15}{4}(1 - \lambda) \\ 4 + \frac{5}{2}(1 - \lambda) \end{bmatrix}$

Gives infinite number of feasible solutions, all giving $z_{max}\,=40$

Thus we get two points A(0, 4) and G(15/4, 5/2) giving the same maximum value of z(=40).

Q3] A) Find the Eigen values and Eigen vectors of the following matrix. (6)

	[2]	2	1
A =	1	3	1
	1	2	2

SOLUTION:-

 $\begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$

The characteristics equation is

[2 – λ	2	1 7	
1	$3 - \lambda$	1	= 0
L 1	2	2 – λ	Γ.,

After simplification we get,

 $\lambda^3 - 7\lambda^2 + 11\lambda - 5 = 0$

 $(\lambda - 1)(\lambda - 1)(\lambda + 5) = 0$

 $\lambda = 1,1,5$

Hence 1,1,5 are the Eigen values.

(1) For $\lambda = 1 [A - \lambda_1 I]X = 0$ gives $\begin{bmatrix} 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ By $R_2 - R_1$, $R_3 - R_1$

 $\begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ $x_1 + 2x_2 + x_3 = 0$

We see that the rank of the matrix is 1 and number of variables is 3. Hence there are 3-1 = 2 linearly independent solutions i.e there are two parameters we shall denote these parameters by s and t.

Putting $x_2 = -5$, $x_3 = -t$, we get $x_1 = -2x_2 - x_3 = 2s + t$ $X = \begin{bmatrix} 2s + t \\ -s + 0 \\ 0 - t \end{bmatrix} = s \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix} + t \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$ $x_1 = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}, x_2 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$ The vectors $\begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$ are linearly independent. Hence corresponding to λ =1 the Eigen vectors are $\begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$

(1) For
$$\lambda = 5$$
, $[A - \lambda_1 I]X = 0$ gives

$$\begin{bmatrix} -3 & 2 & 1 \\ 1 & -2 & 1 \\ 1 & 2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
 by $R_{13} \begin{bmatrix} 1 & 2 & -3 \\ 1 & -2 & 1 \\ -3 & 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$
By $R_2 - R_1$, $R_3 + 3R_1$

$$\begin{bmatrix} 1 & 2 & -3 \\ 0 & -4 & 4 \\ 0 & 8 & -8 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
By $R_3 + 2R_2$

$$\begin{bmatrix} 1 & 2 & -3 \\ 0 & -4 & 4 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

 $x_1 + 2x_2 - 3x_3 = 0$ and $-4x_2 + 4x_3 = 0$ Putting $x_3 = t$ we get $x_2 = t$ and $x_1 = -2x_2 + 3x_3 = -2t + 3t = t$ $X = \begin{bmatrix} t \\ t \\ t \end{bmatrix} = t \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ hence corresponding to $\lambda = 5$, the Eigen vector is $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$

Q3] B) If the height of 500 students is normally distributed with mean 68 inches and standard deviation 4 inches. Find the expected number of students having heights between 65 and 71 inches. (6)

SOLUTION:-

Evaluating no of students having height between 65 and 71 inches

When X = 65 $z = \frac{65-68}{4} = -\frac{3}{4} = -0.75$ When x = 71 $z = \frac{71-6}{4} = \frac{3}{4} = 0.75$ P(-0.75 < Z < 0.75) = Area from (Z = 0 to Z = -0.75) + Area from (Z = 0 to 0.75) $\frac{1}{\sqrt{2\pi}} \int_{-0.75}^{0} C^{-\frac{1}{2}Z^2 dZ} + \frac{1}{\sqrt{2\pi}} \int_{0}^{0.75} C^{-\frac{1}{2}Z^2 dZ} = 0.2734 + 0.2734 = 0.5468$ Probability of students having height between 65 to 71 inches is 0.5468 No of students = $N \times P = 500 \times 0.5468 = 273$

No of students having height between 65 to 71 inches is 273

Q3] C) Obtain Taylors and Laurents expansion of $f(z) = \frac{z^2-1}{z^2+5z+6}$ around z = 0 (8)

SOLUTION:-

Since the degree of the numerator is equal to the degree of the denominator we first divide the numerator by the denominator.

$$f(z) = \frac{z^{2}-1}{z^{2}+5z+6} = 1 - \frac{5z+7}{z^{2}+5z+6}$$

Let $\frac{-5z-7}{z^{2}+5z+6} = \frac{a}{z+3} + \frac{b}{z+2} - 5z - 7 = a(z+2) + b(z+3)$

When z = -2 b = 3 when z = -3 and a = -8

$$f(z) = \frac{z^2 - 1}{z^2 + 5z + 6} = 1 - \frac{8}{z + 3} + \frac{3}{z + 2}$$
 (1)

Case (1): when |z| < 2 we write

$$f(z) = 1 - \frac{8}{3\left[1 + \left(\frac{z}{3}\right)\right]} + \frac{3}{2\left[1 + \left(\frac{z}{2}\right)\right]}$$

When |z| < 2, clearly |z| < 3

$$f(z) = 1 - \frac{8}{3} \left[1 + \left(\frac{z}{3}\right) \right]^{-1} + \frac{3}{2} \left[1 + \left(\frac{z}{2}\right) \right]^{-1} = 1 - \frac{8}{3} \left[1 - \left(\frac{z}{3}\right) + \left(\frac{z}{3}\right)^2 - \dots \right] + \frac{3}{2} \left[1 - \left(\frac{z}{3}\right) + \left(\frac{z}{3}\right)^2 - \dots \right]$$

Case (2): when 2 < |z| < 3 we write

$$f(z) = 1 - \frac{8}{3\left[1 + \left(\frac{z}{3}\right)\right]} + \frac{3}{z\left[1 + \left(\frac{z}{2}\right)\right]} = 1 - \frac{8}{3}\left(1 + \frac{z}{3}\right)^{-1} + \frac{3}{z}\left(1 + \frac{z}{z}\right)^{-1}$$
$$f(z) = 1 - \frac{8}{3}\left[1 - \left(\frac{z}{3}\right) + \left(\frac{z}{3}\right)^2 - \dots \right] + \frac{3}{z}\left[1 - \left(\frac{z}{z}\right) + \left(\frac{z}{z}\right)^2 - \dots \dots$$

Case (3): when |z| > 3 we write

$$f(z) = 1 - \frac{8}{z\left[1 + \left(\frac{3}{z}\right)\right]} + \frac{3}{z\left[1 + \left(\frac{2}{z}\right)\right]}$$

When $|z| > 3$ clearly $|z| > 2$
$$f(z) = 1 - \frac{8}{z} \left(1 + \frac{3}{z}\right)^{-1} + \frac{3}{2} \left(1 + \frac{2}{z}\right)^{-1} = 1 - \frac{8}{z} \left[1 - \left(\frac{3}{z}\right) + \left(\frac{3}{z}\right)^2 - \left(\frac{3}{z}\right)^3 + \cdots\right] + \frac{3}{z} \left[1 - \left(\frac{2}{z}\right) + \left(\frac{2}{z}\right)^2 - \left(\frac{2}{z}\right)^3 + \cdots\right]$$

Q4] A) A machine is claimed to produce nails of mean length 5cms and standard deviation of 0.45cm. A random sample of 100 nails gave 5.1 as their average length. Does the performance of the machine justify the claim? Mention the level of significance you apply. (6)

SOLUTION:-

 $\overline{\mathbf{X}} = 5$ cm

SD = 0.45cm

 $\mu=5.1cm$

n = 100

we have,

$$z = \left| \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \right| = \left| \frac{5 - 5.1}{0.45 / \sqrt{100}} \right| = 2.22$$

Level of significance $\alpha = 0.05$

Critical value : the value of $Z_{\alpha}\,$ at 5% level of significance is 1.96

The performance of the machine increases.

Q4] B) Using the Residue theorem, Evaluate $\int_0^{2\pi} \frac{1}{5\pi}$

dθ 5+3sinθ

(6)

SOLUTION:-

Let
$$e^{i\theta} = z$$
 $e^{i\theta}$. $id\theta = dz$;
 $d\theta = \frac{dz}{iz}$ and $\sin\theta = \frac{z^2 - 1}{2iz}$
 $I = \int_{c}^{iz} \frac{1}{5+3\left(\frac{z^2 - 1}{2iz}\right)} \left(\frac{dz}{iz}\right) = \int_{c}^{1} \frac{2}{3z^2 + 10iz} dz = \int_{c}^{1} \frac{2}{(3z+i)(z+3i)} dz$

Where c is the circle |z|=1

Now the poles of f(z) are given by (3z + i)(z + 3i) = 0, $z = -\left(\frac{i}{3}\right)$ and z = -3i are simple poles. But $z = -\left(\frac{i}{3}\right)$ lies inside and z = -3i lies outside the circle |z| = 1Resides $\left(at \ z = -\frac{i}{3}\right) = \lim_{z \to -\frac{i}{3}} \left[z + \frac{i}{3}\right] \cdot \frac{2}{(3z+i)(z+3i)} = \lim_{z \to -\frac{i}{3}} \frac{2}{3(z+3i)} = \frac{1}{4i}$ $I = 2\pi i \left(\frac{1}{4i}\right) = \frac{\pi}{2}$

Q4] C) (1) In a certain manufacturing process 5% of the tools produced turnout to be defective. Find the probability that in a sample of 40 tools at most 2 will be defective.

(2)A random variable x has the probability distribution P(X = x), $=\frac{1}{8} \cdot 3C_x$, x = 0, 1, 2, 3. find the moment generating function of x (8)

SOLUTION:-

(1) n = 40 p = 0.05
$$f(x) = \frac{e^{-2} \cdot 2^{x}}{x}$$

n = np = 40 × 0.05 = 2 use poisson p(at most 2) = $p(x \le 2) = \frac{e^{-2} \cdot 2^{0}}{0} + \frac{e^{-2} \cdot 2^{1}}{1!} + \frac{e^{-2} \cdot 2^{2}}{2!} = 0.675$
(2) P(X = x), = $\frac{1}{8} \cdot 3C_{x}$, x = 0,1,2,3
P(X = 0) = $\frac{1}{8} \cdot 3C_{0} = \frac{1}{8}$
P(X = 1) = $\frac{1}{8} \cdot 3C_{1} = \frac{3}{8}$
P(X = 2) = $\frac{1}{8} \cdot 3C_{2} = \frac{3}{8}$
P(X = 3) = $\frac{1}{8} \cdot 3C_{3} = \frac{1}{8}$
Moment generating function, M₀(t) = E(e^{txi}) = $\sum p_{i} e^{txi}$
From above values
M₀(t) = $\frac{1}{8} e^{t(0)} + \frac{3}{8} e^{t(1)} + \frac{3}{8} e^{t(2)} + \frac{1}{8} e^{t(3)} = \frac{1}{8} [1 + 3e^{t(0)} + 3e^{t(2)} + e^{t(3)}] = \frac{1}{8} (1 + e^{t})^{3}$
M₀(t) = $\frac{1}{88} (1 + e^{t})^{3}$

Q5] A) Check whether the following matrix is Derogatory or Non- Derogatory

$$\mathbf{A} = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$

(6)

SOLUTION:-

 $\mathbf{A} = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$

Characteristics equation :

$$\lambda^3 - 12\lambda^2 + (8 + 14 + 14)\lambda - 32 = 0$$

∧ = 8,2,2

Let us assume $(x - 8)(x - 2) = x^2 - 10x + 16$ annihilates A

Now $A^2 - 10A + 16I$

 $= \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix} - 10 \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix} + 16 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $= \begin{bmatrix} -16 & 0 & 0 \\ 0 & -16 & 0 \\ 0 & 0 & -16 \end{bmatrix} + \begin{bmatrix} 16 & 0 & 0 \\ 0 & 16 & 0 \\ 0 & 0 & 16 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

 $x^2 - 10x + 16$ annihilates A thus f(x) is the monic polynomial of lowest degree

minimal polynomial = $x^2 - 10x + 16$

Q5] B) In an industry 200 workers employed for a specific job were classified according to their performance and training received to test independence of training received and performance. The data are summarized as follows: (6)

Performance (Good	Not good	Total
Trained	100	50	150
Untrained	20	30	50
Total	120	60	200

Use χ^2 – test for independence at 5% level of significance and write your conclusion.

SOLUTION:-

Null Hypothesis, H_{o} there is no independence

Alternative Hypothesis, $\mathbf{H}_{\mathbf{a}}$ there is an independence

Calculate of test statistics;

Trained and good = $\frac{120 \times 150}{200} = 90$ Untrained and good = $\frac{120 \times 50}{200} = 30$ Trained and not good = $\frac{80 \times 150}{200} = 60$ untrained and not good = $\frac{80 \times 50}{200} = 20$

0	E	$(0 - E)^2$	$\frac{(0-E)^2}{2}$
90	100	100	<u>E</u>
30	20	100	5
60	50	100	2
20	30	100	3.33
			X = 11.33

 $\alpha = 0.05$

Degree of freedom = (r - 1)(c - 1) = (2 - 1)(2 - 1) = 1

Critical value = 3.841

 χ^2 cal > χ^2 table

Thus Null hypothesis is rejected

There is an independence relationship.

Q5] C) Use the dual simplex method to solve the following L.P.P

(8)

 $\text{Minimize } z = 2x_1 + x_2$

Subject to $3x_1 + x_2 \ge 3$

 $4x_1+3x_2\geq \ 6$

 $x_1+2x_2\leq 3\\$

 $x_1,x_2 \geq 0$

SOLUTION :-

 $\begin{array}{l} \mbox{Minimize } z = 2x_1 + x_2 \\ \mbox{Subject to } 3x_1 + x_2 \geq 3 \\ \mbox{4} x_1 + 3x_2 \geq \ 6 \\ \mbox{x}_1 + 2x_2 \leq 3 \end{array}$

 $x_1, x_2 \ge 0$

 $-3x_1 - x_2 \le -3$

 $-4x_1 - 3x_2 \le - 6$

 $x_1 + 2x_2 \leq 3$

Introducing stack variables

 $Z'-2x_1-x_2-0s_1-0s_2-0s_3\\$

 $-3x_1 - x_2 + s_1 - 0s_2 - 0s_3 = -6$

 $x_1 + 2x_2 + 0s_1 + 0s_2 + s_3 = 3$

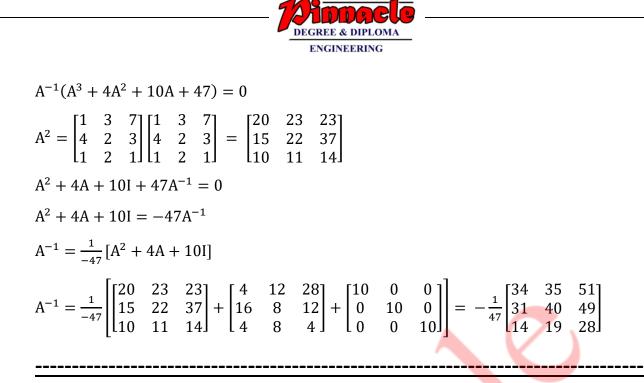
Iterations	Basics		Coefficients of				
no	variables	Х ₁	X ₂	S ₁	S ₂	S ₃	Solution
0	Z'	-2	-1	0	0	0	0
s ₂ leaves	S ₁	-3	-1	1	0	0	-3
x ₂ enters	S ₂	-4	-3	0	1	0	-6
	S ₃	1	2	0	0	1	3
Ratio:		-1/2	-1/3				
1	Z	2	2	0	-1	0	6
	s ₁	-5/3	0	0	1/3	0	-1
/	x ₂	4/3	1	0	1/3	0	2
	S ₃	-5/3	0	0	-2/3	1	-1
Ratio:		-6/5			3/2	0	
2		11/3	2	0	-1/3	0	7
s ₃ leaves	s ₁	0	0	0	1	-1	0
x ₁ enters	X ₂	0	1	0	3	-4/3	6/5
	x ₁	1	0	0	2/5	-3/5	3/5

$$x_1 = \frac{3}{5}; \ x_2 = \frac{6}{5};$$

 $Z_{\min} = 2\left(\frac{3}{5}\right) + \frac{6}{5} = \frac{12}{5}$ $Z_{\min} = \frac{12}{5}$

Q6] A) Show that the matrix A satisfies Cayley- Hamilton theorem and hence find A^{-1} (6)

Where A = $\begin{bmatrix} 1 & 3 & 7 \\ 4 & 2 & 3 \\ 1 & 2 & 1 \end{bmatrix}$ We know that, $|\mathbf{A} - \lambda \mathbf{I}| = 0$ $\begin{vmatrix} 1 & 3 & 7 \\ 4 & 2 & 3 \\ 1 & 2 & 1 \end{vmatrix} - \lambda \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = 0$ $\begin{vmatrix} 1-\lambda & 3 & 7\\ 4 & 2-\lambda & 3\\ 1 & 2 & 1-\lambda \end{vmatrix} = 0$ $(1-\lambda)[(2-\lambda)(1-\lambda)-6] - 3[4(1-\lambda)-7] + 7[8-(2-\lambda)] = 0$ $(1 - \lambda)[2 - 2\lambda - \lambda + \lambda^2 - 6] - 3[4 - 4\lambda - 7] + 7[\lambda + 6] = 0$ $\lambda^{2} - 3\lambda - 4 + \lambda^{3} + 3\lambda^{2} + 4\lambda + 12\lambda + 9 + 7\lambda + 42 = 0$ $\lambda^3 + 4\lambda^2 + 10\lambda + 47 = 0$ The characteristics equation of A is $P(\lambda) = \lambda^3 + 4\lambda^2 + 10\lambda + 47 = 0$ By cayley-Hamilton theorem, A is satisfies its characteristics equation So that replace λ with A $P(A) = A^3 + 4A^2 + 10A + 47 = 0$ (1) Since $|A| = 35 \neq 0$ by A^{-1} is exists. Multiply equation (1) by A^{-1} we get,



Q6] B) A discrete random variable has the probability density function given below (6)

$X = x_i$	-2	-1	0	1	2	3
P(x _i)	0.2	k	0.1	2k	0.1	2k

Find K, Mean, Variance.

SOLUTION:-

$X = x_i$	-2	-1	0	1	2	3
P(x _i)	0.2	k 📃	0.1	2k	0.1	2k

 $\sum P(x_i) = 1$

0.2 + k + 0.1 + 2k + 0.1 + 2k = 1

0.4 + 5k = 1

5k = 1 - 0.4 = 0.6

$$k = \frac{0.6}{5} = 0.12$$

$X = x_i$	-2	-1	0	1	2	3
P(x _i)	0.2	0.12	0.1	0.24	0.1	0.24

Mean = $\sum x_i P(x_i) = (-2 \times 0.2) + (-1 \times 0.12) + (0 \times 0.1) + (1 \times 0.24) + (0 \times 0.1) + (1 \times 0.24) + (0 \times 0.1) + (0 \times 0.1$ $(2 \times$ $0.1) + (3 \times 0.24)$ Mean = -0.4 - 0.12 + 0 + 0.24 + 0.2 + 0.72 = 0.64Mean = E(x) = 0.64 $E(X^2) = [4 \times 0.2] + [1 \times 0.12] + [0] + [1 \times 0.24] + [4 \times 0.1] + [3 \times 0.24]$ $E(X^2) = 2.28$ Variance = $E(X^2) - [E(X)]^2 = 2.28 - 0.64^2 = 2.28 - 0.4096 = 1.8704$ Q6] C)Using Kuhn- Tucker conditions solve the following NLPP (8) Maximize : $Z = 2x_1 - 7x_2 + 12x_1x_2$ Subject to : $2x_1 + 5x_2 \le 98$ $x_1, x_2 \ge 0$ SOLUTION:-Maximize : $Z = 2x_1 - 7x_2 + 12x_1x_2$ Subject to : $2x_1 + 5x_2 \le 98$ $x_1, x_2 \ge 0$ We rewrite the given problem as: $f(x) = 2x_1^2 - 7x_2^2 + 12x_1x_2$ $h(x_1x_2) = 2x_1 + 5x_2 - 98$ Kuhn tucker conditions are: $\frac{\partial f}{\partial x_1} - \frac{\lambda \partial h}{\partial x_1} = 0; \ \frac{\partial f}{\partial x_2} - \frac{\lambda \partial h}{\partial x_2} = 0$ $\lambda h(x_1, x_2) = 0; h(x_1, x_2) \le 0, \lambda \ge 0$ We get, $12x_1 - 14x_2 - \lambda(5) = 0$ (2)

 $2x_1 + 5x_2 - 98 \le 0$ (4) $\lambda \ge 0$ (5) From (3) we get either $\lambda = 0$ or $(2x_1 + 5x_2 - 98) = 0$ Case 1: $\lambda = 0$ and $(2x_1 + 5x_2 - 98) \neq 0$ From 1 and 2, $4x_1 + 12x_2 = 0$ $12x_1 - 14x_2 = 0$ On solving simultaneously we get $x_1 = x_2 = 0$ Case 2: $\lambda \neq 0$ and $2x_1 + 5x_2 - 98 = 0$ $4x_1 + 12x_2 - \lambda(2) = 0$ $12x_1 - 14x_2 - \lambda(5) = 0$ $\lambda = \frac{12 \ _1 - 14x_2}{5}$ Equation I: $4x_1 + 12x_2 - 2\left[\frac{12x_1 - 14x_2}{5}\right] = 0$ $20x_1 + 60x_2 - 24x_1 + 28x_2 = 0$ $-4x_1 + 88x_2 = 0$ (divide through by 4) $-x_1 + 22x_2 = 0$ Put $x_1 = 22x_2$ in 4 $2(22x_2) + 5x_2 = 98$ $44x_2 + 5x_2 = 98$ $49x_2 = 98$ $x_2 = 2$ $2x_1 + 10 = 98$ $2x_1 = 88$

 $x_1 = 44$

These values satisfy all conditions,

 $Z_{max} = 2(1936) - 7(4) + 12(44)(2) = 4900$ $Z_{max} = 4900$

